4723 Core Mathematics 3

1 <u>Eit</u>	<u>her</u> : Obtain $x = 0$ Form linear equation with signs of $4x$ and $3x$ different State $4x - 5 = -3x + 5$ Obtain $\frac{10}{7}$ and no other non-zero value(s)	B1 M1 A1 A1	ignoring errors in working ignoring other sign errors or equiv without brackets or exact equiv
		4	
Or	: Obtain $16x^2 - 40x + 25 = 9x^2 - 30x + 25$	B1	or equiv
	Attempt solution of quadratic equation	M1	at least as far as factorisation or use of formula
	Obtain $\frac{10}{7}$ and no other non-zero value(s)	A1	or exact equiv
	Obtain 0	B1 4	ignoring errors in working
2 (i)	Show graph indicating attempt at reflection in $y = x$	M1	with correct curvature and crossing negative y-axis and positive x-axis
	Show correct graph with <i>x</i> -coord 2 and <i>y</i> -coord -3 indicated	A1 2	
(ii)	Show graph indicating attempt at reflection in <i>x</i> -axis	M1	with correct curvature and crossing each negative axis
	Show correct graph with x-coord -3 indicated	A1 A1	
	and y-coord -4 indicated [SC: Incorrect curve earning M0 but both correct interce		cated B1]
		3	
3	Attempt use of product rule	M1	+ form
	Obtain $2x \ln x + x^2 \cdot \frac{1}{x}$	A1	or equiv
	Substitute e to obtain 3e for gradient Attempt eqn of straight line with numerical gradient	A1 M1	or exact (unsimplified) equiv allowing approx values
	Obtain $y - e^2 = 3e(x - e)$	A1 √	or equiv; following their gradient provided obtained by diffn attempt; allow approx values
	Obtain $y = 3ex - 2e^2$	A1 6	in terms of e now and in requested form
4 (i)	Differentiate to obtain form $kx(2x^2+9)^n$	M1	any constant <i>k</i> ; any $n < \frac{5}{2}$
	Obtain correct $10x(2x^2+9)^{\frac{3}{2}}$	A1	or (unsimplified) equiv
	Equate to 100 and confirm $x = 10(2x^2 + 9)^{-\frac{3}{2}}$	A1 3	AG; necessary detail required
(ii)	Attempt relevant calculations with 0.3 and 0.4	 M1	
	Obtain at least one correct value	A1	x $f(x) = x - f(x) = f'(x)$
	Obtain two correct values and conclude appropriately	A1	$\begin{array}{ccccc} 0.3 & 0.3595 & -0.0595 & 83.4 \\ 0.4 & 0.3515 & 0.0485 & 113.8 \\ \text{noting sign change or showing} \\ 0.3 < f(0.3) \text{ and } 0.4 > f(0.4) \text{ or showing} \\ \text{gradients either side of } 100 \end{array}$
		3	

(iii)	Obtain correct first iterate Carry out correct process Obtain 0.3553	B1 M1 A1	finding at least 3 iterates in all answer required to exactly 4 dp
		3	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
	$0.35 \rightarrow 0.35375 \rightarrow 0.35528 \rightarrow 0.4 \rightarrow 0.35146 \rightarrow 0.35563 \rightarrow 0.4$		
5 (a)	Obtain expression of form $\frac{a \tan \alpha}{b + c \tan^2 \alpha}$	M1	any non-zero constants a, b, c
	State correct $\frac{2\tan\alpha}{1-\tan^2\alpha}$	A1	or equiv
	Attempt to produce polynomial equation in $\tan \alpha$	M1	using sound process
	Obtain at least one correct value of $\tan \alpha$	A1	$\tan \alpha = \pm \sqrt{\frac{4}{5}}$
	Obtain 41.8	A1	allow 42 or greater accuracy; allow 0.73
	Obtain 138.2 and no other values between 0 and 180 [SC: Answers only 41.8 or B1; 138.2 or .	A1	allow 138 or greater accuracy others B1]
	[SC. Answers only 41.6 of B1, 156.2 of .	and no	Jourers B1]
(b)(i	i) State $\frac{7}{6}$	B1	
	0	1	
(ii	i)Attempt use of identity linking $\cot^2 \beta$ and $\csc^2 \beta$	M1	or equiv retaining exactness; condone sigr errors
	Obtain $\frac{13}{36}$	A1	or exact equiv
		2	
5	Integrate $k_1 e^{nx}$ to obtain $k_2 e^{nx}$	M1	any constants involving π or not; any n
	Obtain correct indefinite integral of their $k_1 e^{nx}$	A1	
	Substitute limits to obtain $\frac{1}{6}\pi(e^3-1)$ or $\frac{1}{6}(e^3-1)$	A1	or exact equiv perhaps involving e^0
	Integrate $k(2x-1)^n$ to obtain $k'(2x-1)^{n+1}$	M1	any constants involving π or not; any n
	Obtain correct indefinite integral of their $k(2x-1)^n$	A1	
	Substitute limits to obtain $\frac{1}{18}\pi$ or $\frac{1}{18}$	A1	or exact equiv
	Apply formula $\int \pi y^2 dx$ at least once	B1	for $y = e^{3x}$ and/or $y = (2x-1)^4$
	Subtract, correct way round, attempts at volumes	M1	allow with π missing but must involve
y^2			
	Obtain $\frac{1}{6}\pi e^3 - \frac{2}{9}\pi$	A1	or similarly simplified exact equiv
		9	
7 (i)	State <i>A</i> = 42	B 1	
	State $k = \frac{1}{9}$	B1	or 0.11 or greater accuracy
	Attempt correct process for finding <i>m</i>	M1	involving logarithms or equiv
	Obtain $\frac{1}{9}\ln 2$ or 0.077	A1	or 0.08 or greater accuracy
(::)	Attempt solution for tuging either formula	4 M1	using correct process (loc'ms or T&J
(ii)	Attempt solution for <i>t</i> using either formula Obtain 11.3	$\underline{A1}$	using correct process (log'ms or T&I or or greater accuracy; allow 11.3 ± 0.1
		2	
(iii)	Differentiate to obtain form Be^{mt}	M1	where B is different from A
	Obtain $3.235e^{0.077t}$	A1√	or equiv; following their A and m
	Obtain 47.9	A1	allow 48 or greater accuracy

Mark Scheme

8	(i)	Show at least correct $\cos \theta \cos 60 + \sin \theta \sin 60$ or $\cos \theta \cos 60 - \sin \theta \sin 60$ Attempt expansion of both with exact numerical	B1	
		values attempted	M1	and with $\cos 60 \neq \sin 60$
		Obtain $\frac{1}{2}\sqrt{3}\sin\theta + \frac{5}{2}\cos\theta$	A1	or exact equiv
			3	
	(ii)	Attempt correct process for finding R Attempt recognisable process for finding α	M1 M1	whether exact or approx allowing sin / cos muddles
		Obtain $\sqrt{7}\sin(\theta + 70.9)$	A1 3	allow 2.65 for <i>R</i> ; allow 70.9 ± 0.1 for α
	(iii)	Attempt correct process to find any value of θ + their α Obtain any correct value for θ + 70.9 Attempt correct process to find θ + their α in 3rd quadrant Obtain 131 [SC for solutions with no working shown: Correct and	M1 A1 M1 A1	-158, -22, 202, 338, or several values including this or greater accuracy and no other hly B4; 131 with other answers B2]
			4	
9	(i)	Attempt use of quotient rule	*M1	or equiv; allow u / v muddles
		Obtain $\frac{75 - 15x^2}{(x^2 + 5)^2}$	A1	or (unsimplified) equiv; this M1A1
				available at any stage of question
		Equate attempt at first derivative to zero and rearrange to solvable form	M1	dep * M
		Obtain $x = \sqrt{5}$ or 2.24	A1	or greater accuracy
		Recognise range as values less than y-coord of st pt	M1	allowing < here
		Obtain $0 \le y \le \frac{3}{2}\sqrt{5}$	A1	any notation; with \leq now; any exact equiv
		$= \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_$	6	
	(ii)	State $\sqrt{5}$	B1√	following their <i>x</i> -coord of st pt; condone answer $x \ge \sqrt{5}$ but not inequality with <i>k</i>
			1	answer $x \ge \sqrt{3}$ but not mequality with k
	(iii)	Equate attempt at first derivative to -1 and	<u></u>	
	. /	attempt simplification	*M1	and dependent on first M in part (i)
		Obtain $x^4 - 5x^2 + 100 = 0$	A1	or equiv involving 3 non-zero terms
		Attempt evaluation of discriminant or equiv	M1	dep * M
		Obtain –375 or equiv and conclude appropriately	A1 4	